
Chapter 9

Sequences and Series

In this chapter, we use Maple to study sequences and series. In the first section,
we define sequences using the seq command, plot them using the plot command
and find their limits using the Limit and value commands. In the second
section, we define series using the Sum command and compute their sums using
the value command when the sum can be found exactly. When the sum cannot
be found exactly, one must check for convergence and then estimate the sum.
The third section shows how Maple’s Limit, Int and value commands are
useful in performing many convergence tests. When the series converges, it may
be approximated by a partial sum of the series. Frequently, an integral can be
used to bound the error in this approximation or to improve this approximation
as shown in the fourth section. Finally in the fifth section we study Taylor series
using the taylor and TaylorApproximation commands.

9.1 Sequences and Their Limits

To construct a sequence of numbers whose individual terms are given by a
formula, first input the formula that describes the terms as a function of n.

> a:=n->1/n^2;

a := n → 1

n2

To have Maple construct the first five terms of this sequence, use the seq com-
mand. Its first argument is an expression for the terms of the sequence. Its
second argument tells Maple which terms to construct.

> seq(a(n), n=1..5);

1,
1

4
,

1

9
,

1

16
,

1

25
To plot the sequence, you first need a list of points consisting of the index

number and the corresponding term. Again, use the seq command

> pointlist:=[seq([n,a(n)], n=1..5)];
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pointlist := [[1, 1], [2,
1

4
], [3,

1

9
], [4,

1

16
], [5,

1

25
]]

Notice the extra set of square brackets, making this a list of points as required
by the plot command. (See Section 3.1 and the help on ?list.) Now plot it:

> plot(pointlist, 0..6, style=point, symbol=circle);
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Often the main task with sequences is to determine the limiting value as n
gets large. (This is denoted by n → ∞ which is read as ”n goes to infinity.”)
Maple is very good at calculating the limiting value but sometimes a plot gives
a better idea of the sequence’s behavior.

Example: Examine the behavior of the sequence bn =
2n− 1

3n + 6
by plotting the

sequence and by finding its limit as n→∞.

Solution: Define and plot the sequence:

> b:=n->(2*n-1)/(3*n+6);

b := n → 2n− 1

3n + 6
> pointlist:=[seq([n,b(n)], n=1..50)]:

> plot(pointlist, 0..50, 0..1, style=point, symbol=cross);
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Notice that the seq command was terminated with a colon in order to suppress
Maple’s output. When first trying this, to check for typos, use a semicolon and
have Maple display only the first few terms. Then click back on the line and edit



9.2. SERIES AND THEIR SUMS 137

it to get all desired terms and use a colon instead. In the plot command, if you
leave off the option style=point, Maple will connect the points with straight
lines

Maple’s output is a plot of the first 50 terms of the sequence bn. We see
from the plot that as n goes to infinity, the sequence appears to have a limit
which is slightly greater than 0.6. However, Maple can find the limit exactly,
by using Limit and value.

> Limit(b(n),n=infinity); value(%);

lim
n→∞

2n− 1

3n + 6

2

3
which is slightly greater than 0.6. Recall that the Limit command (with a
capital L) displays the limit in order to check for typos. The value command
then evaluates it.

This sequence is so simple that Maple is not needed to compute the limit.
(Divide numerator and denominator by n.) However this same procedure can
be used to handle more complicated problems.

9.2 Series and Their Sums

A second operation commonly performed on a sequence an is to add its terms

producing a series

∞
∑

n=1

an. (Note: the index of summation, n, does not need to

begin with 1 and may end with a finite number or ∞.) To sum the terms, use

Maple’s Sum and value commands. If an =
1

n2
, as in the previous section, then

a finite sum might be

> Sum(a(n),n=5..9); value(%);

9
∑

n=5

1

n2

737641

6350400
while an infinite sum is

> Sum(a(n),n=1..infinity); value(%);

∞
∑

n=1

1

n2

π2

6
Notice that Maple is able to sum this series, while you are not expected to.

Maple may also be able to determine that a series diverges, for example:
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> c:=n->1/n; Sum(c(n),n=1..infinity); value(%);

c := n→ 1

n
∞
∑

n=1

1

n

∞
This infinite series is called the harmonic series.

Let’s try one more, the geometric series:

> a:=n->r^n; Sum(a(n),n=0..infinity); value(%);

a := n → rn

∞
∑

n=0

rn

− 1

r − 1
Caution: Unfortunately, Maple did not warn us that this series converges to
the above value only if |r| < 1. For example, you might try to compute the

value of the series

∞
∑

n=0

2n. So be careful!

Even though Maple sums the above series exactly, most infinite series cannot
be summed exactly. So for many series, the goal is to discover whether or not
the series converges, and to compute approximate values for its sum when it
does converge.

9.3 Convergence of Series

There are four very useful tests for the convergence of a series of positive terms:
ratio, root, limit comparison and integral tests. In this section, we will use
Maple and these tests to determine whether or not a series of positive terms
converges.

Ratio Test: Consider the series

∞
∑

n=0

23n

(2n + 1)!
. We input its terms as:

> a:=n->2^(3*n)/(2*n+1)!;

a := n → 2(3 n)

(2n + 1)!

Again, the terms are entered as functions of n. This allows us to refer back
to individual terms when we use the ratio or root test. Here the ratio test is
appropriate. We compute:

> Limit(a(n+1)/a(n),n=infinity); value(%);
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lim
n→∞

2(3 n+3) (2n + 1)!

(2n + 3)! 2(3 n)

0

Since the limit of the ratio of consecutive terms is 0, which is less than 1, the
series converges.

Root Test: Similarly, for the root test, consider the series

∞
∑

n=0

32n

(2n + 1)23n

which we input as:

> b:=n->3^(2*n)/(2*n+1)/2^(3*n);

b := n → 3(2 n)

(2n + 1) 2(3 n)

Using the root test, we compute:

> Limit(b(n)^(1/n),n=infinity); value(%);

lim
n→∞

(
3(2 n)

(2n + 1) 2(3 n)
)(

1

n
)

9

8

Since the limit is
9

8
which is greater than 1, the series diverges.

When the limit in the ratio or root test is different from 1, we know whether
the series converges or diverges. When this limit is 1, another test is needed.

For example, for the series

∞
∑

n=2

ln(n)

n2
the limit of the ratios and the limit of the

nth roots is 1. So we turn to another test.

Limit Comparison Test: Define the terms of the series
∞
∑

n=2

an =
∞
∑

n=2

ln(n)

n2

> a:=n->ln(n)/n^2;

a := n → ln(n)

n2

Since ln(n) grows slower than any positive power of n, we can try a limit com-

parison test with the series

∞
∑

n=2

bn =

∞
∑

n=2

1

n3/2
which is convergent because it is

a p-series with p =
3

2
> 1.

> b:=n->1/n^(3/2);

b := n → 1

n(3/2)

> Limit(a(n)/b(n),n=infinity); value(%);

lim
n→∞

ln(n)√
n
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0

This says that the an’s go to zero faster than the bn’s. So

∞
∑

n=2

an =

∞
∑

n=2

ln(n)

n2

also converges.

Integral Test: Again look at the series

∞
∑

n=2

ln(n)

n2
. Since the terms are positive

and decreasing, we can try the integral test.

> a:=n->ln(n)/n^2;

a := n → ln(n)

n2

> Int(a(n),n=2..infinity); value(%);
∫

∞

2

ln(n)

n2
dn

1

2
ln(2) +

1

2

Since the integral is finite, the series
∞
∑

n=2

ln(n)

n2
converges.

9.4 Error Estimates

One of the more useful aspects of the integral test is its ability to estimate the
error in using a partial sum to approximate a series. For example, we saw earlier

that the sum of the series

∞
∑

n=1

1

n2
is

π2

6
. Suppose we didn’t know this and added

up the first 50 terms of the series. How close are we to the actual sum? Let’s
see:

> a:=n->1/n^2;

a := n → 1

n2

> Sum(a(n),n=1..50); S50:=evalf(%);

50
∑

n=1

1

n2

S50 := 1.625132734

> err:=evalf(Pi^2/6-S50);

err := 0.019801334

However, if we did not know the sum is
π2

6
, could we find an upper bound on

this error? Yes, using the ideas underlying the integral test! First note that the
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error is

err =

∞
∑

n=1

1

n2
−

50
∑

n=1

1

n2
=

∞
∑

n=51

1

n2

This last sum is a lower Riemann sum for

∫

∞

50

1

x2
dx as illustrated below.

> rightbox(1/x^2, x=50..75, 25);
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Consequently,

err =

∞
∑

n=51

1

n2
≤

∫

∞

50

dx

x2

So we compute:

> Int(1/x^2,x=50..infinity); maxerr:=evalf(%);
∫

∞

50

1

x2
dx

maxerr := 0.02000000000

The error must be less than 0.02. We found it to be .019801334.

Integrals can also be used to improve the estimate. Note that the error

err =

∞
∑

n=51

1

n2

is also an upper Riemann sum for

∫

∞

51

1

x2
dx as illustrated below.

> leftbox(1/x^2, x=51..76, 25);
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So we compute:

> Int(1/x^2,x=51..infinity); minerr:=evalf(%);
∫

∞

51

1

x2
dx

minerr := 0.01960784314

So the error must be at least .01960784314. Putting these facts together, the

sum of the series

∞
∑

n=1

1

n2
must be at least

> Smin:=S50+minerr;

Smin := 1.644740577

and at most

> Smax:=S50+maxerr;

Smax := 1.645132734

Thus the sum must be in the interval [Smin, Smax]. The midpoint of this interval
is a better approximation to the sum:

> Save:=(Smin+Smax)/2;

Save := 1.644936656

The error in this new approximation is at most half the width of this interval.

> Err:=(Smax-Smin)/2;

Err := 0.0001960785

This is a significantly smaller error. Further, from the above we see that
π2

6
≈

1.644937± 0.000196. Compare this to Maple’s value

> evalf(Pi^2/6);

1.644934068

Note: This averaging method gives us a much better approximation of the
infinite series than that obtained by just using the partial sum of the first 50
terms, as we did earlier. Moreover, the extra work involved is minimal.
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9.5 Taylor Polynomials

An extremely useful idea in mathematics is the approximation of complicated
functions with simpler ones. In Section 7.4 we studied Fourier cosine expansions
which approximated functions by sums of cosines. In this section we study
Taylor expansions, which approximate functions by polynomials.

Suppose we want the fifth degree Taylor polynomial of sin (x) about x = 0.
The following Maple commands will construct this polynomial.

> taylor(sin(x),x=0,6); p:=convert(%,polynom);

x− 1

6
x3 +

1

120
x5 + O(x6)

p := x− 1

6
x3 +

1

120
x5

A few words about the syntax are in order. Notice that the Maple command
taylor has three parameters: the expression whose Taylor polynomial we want;
the point that we expand about; and an integer. This last parameter—in this
case 6—is one more than the degree of the desired Taylor polynomial. In Maple
this number refers to the order of the error of the approximating polynomial.
In the output, this error is denoted by O(x6). Notice too that the Maple com-
mand convert(%,polynom) drops the error term and enables us to assign the
polynomial to a variable without having to retype it.

You can graph the function and its Taylor polynomial on the same plot:

> plot([sin(x),p],x=-2*Pi..2*Pi,-1.5..1.5);
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The higher the degree of the Taylor polynomial, the better the approximation.

Further, the TaylorApproximation command in the Student[Calculus1]

package allows you to use a single command to compute a sequence of Taylor
polynomials for a given expression:

> with(Student[Calculus1]):

> TaylorApproximation(sin(x), x=0, order=1..6);

x, x, x− 1

6
x3, x− 1

6
x3, x− 1

6
x3 +

1

120
x5, x− 1

6
x3 +

1

120
x5

or to plot them together with the original function:
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> TaylorApproximation(sin(x), x=0, order=1..12, output=plot,
> -2*Pi..2*Pi, view=[-2*Pi..2*Pi,-1.5..1.5],
> functionoptions=[thickness=3], tayloroptions=[thickness=1]);

f(x)
Taylor approximations
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f(x) = sin(x)

at the Point (0, f(0))
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or animate them to see that the Taylor polynomials do approximate the original
function.

> TaylorApproximation(sin(x), x=0, order=1..12,
> output=animation,-2*Pi..2*Pi, view=[-2*Pi..2*Pi,-1.5..1.5]):

Try this yourself, since you cannot see an animation in a book. To animate it,
click in the plot and click on the Play button which is a triangle on the plot
toolbar.

In addition, the Taylor Remainder Formula for the error term can often
give a valuable estimate as to how well we have approximated our function.
For example, suppose we want to approximate the sine function on the interval
[0, π] with its Taylor polynomial of degree 7, and we wish to know how good an
approximation we have. First we decide to expand about the midpoint of the
interval.

> taylor(sin(x),x=Pi/2,8): p:=convert(%,polynom);

p := 1−
(x− π

2
)2

2
+

(x− π

2
)4

24
−

(x− π

2
)6

720
The Taylor Remainder Formula says the remainder is

En = sin(x)− p =
f (n+1)(c)

(n + 1)!

(

x− π

2

)(n+1)

where c is some number between x and π/2. In this case, n = 7; so we need the
eighth derivative of the sine function, evaluated at c. So we compute

> diff(sin(x),x$8); subs(x=c,%);

sin(x)

sin(c)
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We know the absolute value of sine is never larger than 1. Moreover, the distance
between x and π/2 is always less than or equal to π/2 (recall that x lies in the
interval [0, π]). We can therefore estimate the error as follows.

|E7| = |sin(x)− p| =
∣

∣

∣

∣

f (8)(c)

8!

(

x− π

2

)8
∣

∣

∣

∣

<

∣

∣

∣

∣

1

8!

(π

2

)8
∣

∣

∣

∣

> evalf((Pi/2)^8/8!);

0.0009192602758

Thus our seventh degree polynomial is uniformly within 0.00092 of the value
of the sine function on the interval [0, π]. To visualize this, we plot the sine
function together with the Taylor polynomial.

> plot({sin(x),p},x=-Pi/2..3*Pi/2);
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Notice the agreement is excellent on [0, π] and only begins to vary near −π/2
and 3π/2.

9.6 Summary

We studied sequences using the seq, plot, Limit and value commands. Then
we studied series using the Sum, value, Limit and Int commands.
Finally we studied Taylor series using the taylor, convert(%,polynom) and
TaylorApproximation commands.

9.7 Exercises

In Exercises 1–7, plot the sequence. Try to determine whether or not the se-
quence has a limit as n →∞ and what the limiting value is. Then have Maple
compute the limit if it exists.

1. an =
3n3 − 6n2 + 15

2n3 + 18n2 − 6

2. an =
3n3 − 6n2 + 15

2n4 + 18n2 − 6
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3. an =
2n4 + 18n3 − 6

3n3 − 6n2 + 15

4. an =
2 + (−1)nn2

2n2 + 3n + 4

5. an =
ln(n2)

n2/3

6. an =
n!

20n

7. an =

(

1 +
3

n

)1/n

In Exercises 8–12 sum the given series using Maple. Then, simultaneously
plot the first 10 terms of the sequence of terms an (In Maple: a(n).) and

the first 10 terms of the sequence of partial sums Sn =

n
∑

k=1

ak. (In Maple:

S:=n->sum(a(k),k=1..n).)

8.
∞
∑

n=1

1

4n

9.

∞
∑

n=1

(−1)n

n2

10.

∞
∑

n=1

1

nk+1/2
, for k = −1, 0, 1

11.

∞
∑

n=1

n4

3n

12.

∞
∑

n=1

1

4 + n2

In Exercises 13 and 14, decide whether the given series converges. In Exercises
15–18, give the values of x for which the series converges. For each of the series,
try as many of the convergence tests discussed in this chapter as seem applicable.

13.
∞
∑

n=0

n3

2n5 + n2 + 2

14.

∞
∑

n=2

ln2(n)

n ln(nln(n))
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15.

∞
∑

n=1

(−1)nxn

n 3n

16.

∞
∑

n=1

xn

en

17.

∞
∑

n=2

(−1)nx2n

n ln(n)

18.

∞
∑

n=1

(2x− 3)n

np
for p =

1

2
, 1,

3

2
and 2.

19. Find the sixth degree Taylor polynomial of cos(2x) about x = π/3. Then
use the Taylor Remainder Formula to estimate the error in approximating
cos(2x) with this Taylor polynomial on the interval [0, π]. Finally, plot
both the function and the Taylor polynomial on the same coordinate axes.

20. Find the fourth through the eighth degree Taylor polynomials about x = 1

for
x4 − 15x2 + 2x− 5

x2 − 6
. Plot all of them and the function on the same

graph on the interval [−1, 2]. Then animate these plots. Finally use the
Taylor Remainder Formula to estimate the error in approximating this
function with the eighth degree Taylor polynomial on the interval [−1, 2].

21. Find the 100th degree Taylor polynomial of x4 − 2x2 + 15x − 6 about
x = 0 and also about x = 6, on the interval [−2, 8]. Explain why you
should expect this result.

22. Estimate the value of the series

∞
∑

n=1

1

n3
by using the sum of the first 50

terms of the series and by using the averaging method discussed in Section
9.4. Estimate the error in each approximation.

23. Calculate the seventh and eighth degree Taylor polynomials for the func-
tion cos(x) about x = π/2. The eighth degree polynomial should be more
accurate than the seventh. Is it? How much extra work is involved in
evaluating this eighth degree Taylor polynomial than in evaluating the
seventh degree one? Next apply the Taylor Remainder Formula to esti-
mate the error in each approximation on the interval [0, π]. Which error
bound should you believe?

24. Compute the 5th degree Taylor polynomial centered at a = 0 for the
function f(x) = sin(x). Name this polynomial p(x) and evaluate p(x3).
Now compute the 15th degree Taylor polynomial centered at a = 0 for
the function g(x) = sin(x3). What do you observe?
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25. Compute the 6th degree Taylor polynomial centered at a = 1 for the
function f(x) = tan(x). Name this polynomial p(x) and evaluate p(x4).
Now compute the 24th degree Taylor polynomial centered at a = 0 for
the function g(x) = tanx4. What do you observe?

26. Use the previous 2 problems to make a conjecture concerning the relation-
ship of the nth degree Taylor polynomial centered at a = 0 for a function
f(x) and the (k×n)th degree Taylor polynomial centered at a = 0 for the
function f(xk).

27. Compute the 5th degree Taylor polynomial centered at a = 0 for the
function f(x) = cos(x). Name this polynomial p(x) and evaluate p(x3).
Now compute the 12th degree Taylor polynomial centered at a = 0 for the
function g(x) = cos(x3). What do you observe? In the problems above,
we had the same sort of behavior, but the ratio of the Taylor orders would
be 3:1 or 15:5. Why do we get the same result here with only a 12:5 ratio?

28. Use an appropriate degree Taylor polynomial centered at a = 0 for the
function f(x) = sin(x3) to approximate

∫ 1

0

sin(x3) dx

to 15 decimal places of accuracy.

29. Repeat the previous problem for the integral

∫ 3

−3

e−x2

dx

30. It is not always clear how to choose the value of the centering point for
a Taylor polynomial. Consider the function f(x) = e3x + 7 sin(x) on
the interval [−1, 1]. Let p3,a(x) denote the generic 3rd degree Taylor
polynomial centered at x = a for f(x). Find the value of a so that

∫ 1

−1

[f(x)− p3,a(x)]
2

dx

is minimized.


